
GnuCOBOL 3.2 Build Guide for MinGW (draft)

GnuCOBOL 3.2 Final [28Jul2023]
Build Guide for MinGW - Minimalist GNU for Windows

cobc (GnuCOBOL) 3.2
Copyright (C) 2023 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <https://gnu.org/licenses/gpl.html>
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
Written by Keisuke Nishida, Roger While, Ron Norman, Simon Sobisch, Edward Hart

This document was prepared by: Arnold J. Trembley (arnold.trembley@att.net)
and last updated Saturday, 29 July 2023.

My original starting point for building GnuCOBOL and writing these guides was the manual
written by Gary Cutler (CutlerGL@gmail.com) .

OpenCOBOL-1.1-06FEB2009-Build-Guide-For-MinGW.pdf

https://www.arnoldtrembley.com/OpenCOBOL-1.1-06FEB2009-Build-Guide-For-MinGW.pdf

Simon Sobisch of the GnuCOBOL project was extremely helpful whenever I encountered
difficulties building GnuCOBOL, especially in running the compiler test suites and VBISAM.

Brian Tiffin also provided assistance and encouragement. The GnuCOBOL project space can be
found here:

https://www.gnu.org/software/gnucobol

https://sourceforge.net/projects/gnucobol/

I would also like to thank Chuck Haatvedt, David Wall, Gary Van Winkle, Eugenio di Lorenzo,
Ralph Linkletter, James K. Lowden, Ron Norman, Sauro Menna, and other GnuCOBOL Forum
contributors for additional advice, insights, and corrections.

Page 1 of 37

https://sourceforge.net/projects/open-cobol/
https://sourceforge.net/projects/open-cobol/
mailto:CutlerGL@gmail.com

GnuCOBOL 3.2 Build Guide for MinGW (draft)

Required Components:

You will need to download the following components in order to build the GnuCOBOL 3.2
compiler in Windows:

1. MinGW - Minimalist GNU for Windows
2. GNU Multiple-Precision Arithmetic package (gmplib)
3. PDCursesMod 4.3.7 - used for screen read and write. (alternate versions available)
4. Berkeley Database (BDB) package from Oracle ==OR==
5. VBISAM2 by Roger While
6. GnuCOBOL 3.2 compiler source code (or 3.1.2 or 4.0 early dev)
7. GCSORT (an optional component) by Sauro Menna

You may want to download all these packages first and make your own backups before starting
the GnuCOBOL build process.

Licensing:

The GnuCOBOL compiler is licensed under the GNU General Public License (GPL) version 3, and
the runtime libraries are licensed under the GNU Lesser General Public License (LGPL) version 3.
The Oracle Berkeley Database (BDB) package, used for indexed sequential file access, has some
license restrictions related to distribution of compiled GnuCOBOL programs that could require
distributing your COBOL source code or else paying a license fee to Oracle. There are no similar
license restrictions if the VBISAM package is used for indexed sequential file access (instead of
BDB), or if no indexed sequential file access will be included (NODB).

Download the packages:

The most current MinGW software package can be downloaded from OSDN:
https://osdn.net/projects/mingw/
https://osdn.net/projects/mingw/downloads/68260/mingw-get-setup.exe/

Download the file named "mingw-get-setup.exe". This should be the 32-bit version of MinGW.
MinGW is a Unix-like environment for Windows needed to run GCC (the GNU Compiler
Collection) to build the GnuCOBOL compiler. It is only needed to build the compiler. The
generated GnuCOBOL compiler will run in a Windows CMD.EXE shell. GnuCOBOL will translate
COBOL source code into C source code, and will call the embedded MinGW GCC compiler to
compile the intermediate C code into an executable program for Windows.

Page 2

https://sourceforge.net/projects/mingw/files/

GnuCOBOL 3.2 Build Guide for MinGW (draft) page 3 of 33

Installing MinGW and the MSYS bash shell

When you run “mingw-get-setup.exe” it will default to installing in C:\MinGW and you should
accept this default. But when you are using any generated GnuCOBOL compiler you should be
careful to avoid path/name conflicts with the MinGW GCC compiler embedded in GnuCOBOL.

Continue with "mingw-get-setup.exe" and let it download the catalog of current components.
When that is complete, use the GUI interface to select the “mingw32-base-bin” and “msys-
base-bin” packages from the “Basic Setup” menu.

Be careful to download “mingw-get-setup.exe” from the OSDN URL, rather than the older
SourceForge URL, because the SourceForge MinGW package is no longer being updated.

Page 3 of 37

GnuCOBOL 3.2 Build Guide for MinGW (draft)

Then select the following components from the “All Packages” menu. Some of them will
already be selected with mingw32-base and msys-base.

mingw32-bzip2.bin
mingw32-dos2unix.bin
mingw32-gdb-bin
mingw32-gettext.bin /* for translatable strings */
mingw32-gettext.dev /* for translatable strings */
mingw32-gettext.dll /* for translatable strings */
mingw32-libtool.bin
mingw32-make.bin
msys-autogen.bin /*needed to build GCSORT.EXE */
msys-bash.bin /* to include the MinGW bash shell */
msys-bison.bin /*needed to build GCSORT.EXE */
msys-m4.bin /* for building Berkeley DB */ already in...
msys-make.bin already in...
msys-perl.bin /* for NIST COBOL85 testing */ dev toolkit
msys-wget.bin /* for NIST COBOL85 testing */

NOTE: some components are only visible under the “All Packages” menu, and not visible
under the MSYS menu.

Then have “mingw-get” apply all changes that were previously marked. The installation may
take 5 to 15 minutes.

If you need to go back and add packages to MinGW later, you can use the GUI interface found
at: c:\MinGW\libexec\mingw-get\guimain.exe

Page 4

GnuCOBOL 3.2 Build Guide for MinGW (draft) page 5 of 33

After the install completes, verify that C:\MinGW\bin contains a file named mingwm10.dll.

Then verify that a directory named "C:\MinGW\MSYS\1.0\etc" exists and that it contains a file
named "fstab" with no file extension. View this file with Notepad or Wordpad and verify that it
has the following line in it:

c:/MinGW /mingw

This “fstab” file may contain comment lines which begin with “#”, and they can be ignored.
Since Unix file and folder names are case-sensitive, this fstab file tells MinGW/MSYS to treat the
Windows "C:\MinGW" folder as the Unix/Linux mount point named “/mingw”.

/etc/fstab -- mount table configuration for MSYS.
Please refer to /etc/fstab.sample for explanatory annotation.

MSYS-Portable needs this "magic" comment:
MSYSROOT=C:/MinGW/msys/1.0

Win32_Path Mount_Point
#--
C:/MinGW /mingw

MSYS will only use the “/mingw” mount point, even though it is "C:\MinGW" to Windows (and
indeed, could be a completely different name in Windows). If you selected a different device
and folder name on the MinGW installation startup screen, it should be automatically built into
the “fstab” file.

NOTE: As of 2023-07-28, the osdn.net site is down or responding very slowly, making it
almost impossible to download mingw-get.exe or related components in order to install
MinGW.

You can use my backups of the installed MinGW folder:

https://www.arnoldtrembley.com/MinGW0bkup01.7z
https://www.arnoldtrembley.com/MinGW0bkup02.7z

The second file includes gmplib already built.

Page 5 of 37

https://www.arnoldtrembley.com/MinGW0bkup02.7z
https://www.arnoldtrembley.com/MinGW0bkup01.7z

GnuCOBOL 3.2 Build Guide for MinGW (draft)

Finally, you will need to create a shortcut on your windows desktop to:

C:\MinGW\MSYS\1.0\msys.bat -norxvt

Do not forget to add the “-norxvt” parameters in the shortcut. This tells the msys.bat file to use
the “sh” shell instead of the “rxvt” shell. You may also want to change the icon for the shortcut
to use “C:\MinGW\MSYS\1.0\msys.ico”.

Make sure the properties for this shortcut use:

Target: C:\MinGw\msys\1.0\msys.bat -norxvt
Start in: C:\MinGW\MSYS\1.0

Also, make sure the Security properties of the MSYS shortcut include FULL administrator access
(Full Control, Modify, Read & Execute, Read, and Write).

You should now have an icon "MSYS" on your desktop. Double-click it to start it.

How to Configure the BASH shell (From Gary Cutler):

The window started by the "MSYS" icon resembles a Windows console, but is actually an MSYS
"bash" shell for running the MinGW GCC development environment. Use the window's
"Properties" command as you would do with a normal window to change the window size to
190 columns by 60 rows - make sure the buffer size has a "height" of at least 4000 lines. When
running "make" commands many components display thousands of messages in the MSYS
window, and you may want to scroll back to view them. You will also want to change the font to
something that enables that window to fit on your screen, for example, "Lucida Console" with a
font size of "10".

If you are running Windows Vista or Windows 7, close the bash window and restart it again, this
time giving it Administrator authority via "Run As Administrator".

If you are running MinGW on a widescreen laptop you may want to limit the window height to
only 50 or 55 rows for your convenience. You should also set the MSYS properties “edit options”
to enable both “quick edit mode” and “insert mode”. That will allow you to paste commands
into the MSYS bash shell using the right mouse button (instead of Ctrl-V), and copy blocks of
text messages from the MSYS bash shell window (by highlighting with the mouse) and paste
them into other documents.

Page 6

GnuCOBOL 3.2 Build Guide for MinGW (draft) page 7 of 33

Unexpected Errors

If unexpected errors occur anytime during the GnuCOBOL build process, first check that all steps
are run in the correct order and no steps are skipped. For example, accidentally omitting any
“make install” command will prevent the final GnuCOBOL from building. Then check that all
MSYS commands have been entered correctly, without any typing mistakes.

It is still possible to have unexpected errors and for those you should join the GnuCOBOL forum
“Help Getting Started” and ask questions there. Be prepared to show exactly what errors
occurred. It will also help if you register with the GnuCOBOL discussion forums, so your posts
can appear immediately without having to wait to be moderated.

Here are the links to the GnuCOBOL Sourceforge and the discussion forums:

https://sourceforge.net/projects/gnucobol/files/nist/

https://sourceforge.net/p/gnucobol/discussion/

In previous builds some of the errors I encountered included messages like this:

rm: cannot lstat `conftest.exe': Permission denied

Based on comments in the GnuCOBOL forums, the best solution to this problem is to disable
Windows file indexing (for search), and also to deactivate your internet security/anti-virus
product temporarily. But you can safely leave Windows Defender/Microsoft Security Essentials
(MSE) activated.

Page 7 of 37

https://sourceforge.net/p/open-cobol/discussion/
https://sourceforge.net/projects/open-cobol/files/nist/

GnuCOBOL 3.2 Build Guide for MinGW (draft)

Anti-Virus Considerations

I found that Windows Defender/Microsoft Security Essentials did not appear to have conflicts
with MinGW GnuCOBOL builds, while McAfee Antivirus and freeware Avast Anti-virus
sometimes caused problems. One user in reported in the forum that Norton Anti-virus
quarantined MinGW output as possible viruses.

If your anti-virus system tries to block any programs generated by MinGW GCC, you may want to
disconnect from the internet and disable your anti-virus protection. Or you may want to
exclude the entire C:\MinGW* folder from anti-virus scanning if that is an option. I also had to
create exclusions for dummy.exe in the Windows %User%\temp folder.

Some of the errors I encountered said “permission denied”, and when I reran that configure or
make step, the errors disappeared.

I recommend running with your anti-virus disabled (except for Windows Defender/MSE). This
will allow the build to run much more quickly and also prevent problems during the build.

If you intend to run the NIST COBOL85 test suite, you either need an internet connection to
download the “newcob.val” file during the GnuCOBOL “make test” step, or you need to
download it before building the components:

https://sourceforge.net/projects/gnucobol/files/nist/

You will need to choose one of the archive files (newcob.zip, newcob.7z, or newcob.val.tar.gz),
and expand it to extract the “newcob.val” file. It is 26 megabytes and contains all the NIST
COBOL85 test programs.

Page 8

GnuCOBOL 3.2 Build Guide for MinGW (draft) page 9 of 33

Building GMP (GNU Multiple-Precision Arithmetic Library)

The GMP 6.2.1 GNU Multiple-Precision Arithmetic Library can be downloaded from:
https://gmplib.org/#DOWNLOAD
https://gmplib.org/download/gmp/gmp-6.2.1.tar.xz

As of 17 January 2020, the most current GMP version is in a file named "gmp-6.2.1.tar.lz", but
you can search the site to find a download in tar.xz format, which is easier to unpack in MinGW.

https://gmplib.org/download/gmp/gmp-6.2.1.tar.xz

Copy "gmp-6.2.1.tar.xz" into your C:\MinGW\MSYS folder using Windows commands, and then
use the following bash shell commands to uncompress it:

cd /mingw/MSYS
tar xf gmp*.tar.xz # unpack non-compressed tar
rm gmp-*.tar.xz # remove the "tar" file

At this point you have a Windows folder named C:\MinGW\MSYS\gmp-6.2.1. The next five
MSYS commands will build gmp 6.2.1 for GnuCOBOL:

cd gmp*
./configure -–prefix=/mingw --enable-fat --enable-shared --disable-static
make
make check # Test gmp 6.2.1
make install

ls /mingw/bin/libgmp*.dll

You may find it easier to copy and paste these commands into the MSYS bash shell one line at at
time, especially for the “./configure” command. The four commands to build GMP take 20 to 40
minutes to run (with “--enable-fat”). Commands can also be concatenated using the &&
operator, for example “make && make check && make install”. Processing will stop early if any
errors are found.

GMP documentation explains “--enable-fat” as follows:
“Using **--enable-fat** selects a “fat binary” build on x86, where optimized low level
subroutines are chosen at runtime according to the CPU detected. This means more code, but
gives good performance on all x86 chips. (This option might become available for more
architectures in the future.)”

Page 9 of 37

https://gmplib.org/download/gmp/gmp-6.2.1.tar.xz
https://gmplib.org/#DOWNLOAD

GnuCOBOL 3.2 Build Guide for MinGW (draft)

The "./configure" command took about 5 minutes to run and produced hundreds of messages.

The "make" command took about 30 minutes to run and produced thousands of messages.

The "make check" command ran for about 20 minutes and produced thousands of messages. It
performs hundreds of tests against the generated gmplib components

The "make install" command runs very quickly. It can be run before “make check”, but do not
forget to run “make install” to prevent problems building the final COBOL compiler.

After "make install" completes, run the following command in MSYS to verify that a file named
"/mingw/bin/libgmp-10.dll" exists:

ls /mingw/bin/libgmp*.dll

Page 10

GnuCOBOL 3.2 Build Guide for MinGW (draft) page 11 of 33

BUILDING WITH PDCURSESMOD 4.3.7 (WINCON)

The PDCursesMod package is used for COBOL SCREEN-SECTION and extended console input-
output support (DISPLAY/ACCEPT AT/WITH).

Download PDCursesMod 4.3.7 from the following location:

https://github.com/Bill-Gray/PDCursesMod/archive/master.zip
https://github.com/Bill-Gray/PDCursesMod/archive/refs/heads/master.zip
https://github.com/Bill-Gray/PDCursesMod/releases/tag/v4.3.7

Copy "PDCursesMod-4.3.7.tar.gz" into your C:\MinGW\MSYS folder using Windows commands,
and then use the following bash shell commands to uncompress it:

cd /mingw/MSYS
tar xzf PDC*.tar.gz
rm PDC*.tar.gz

After you have unpacked the tarball, you would use the following commands to build PDCurses:

cd PDC*/wincon # note changes
make -f Makefile INFOEX=N CHTYPE_64=Y DLL=Y

Then use the following command to verify that a "pdcurses.dll" exists in the
"C:\MinGW\MSYS\PDCursesMod-4.3.7\wincon" folder.

ls *.dll

You can also verify the presence of “pdcurses.dll” using Windows Explorer.

There is no “make install” in PDCurses, so you must enter the following MSYS commands into
the bash shell to install PDCurses 4.3.7 (either wincon, wingui, or vt). This is another instance
where it may help you to paste these commands into the MSYS bash shell window:

install pdcurses.dll /mingw/bin/.
install pdcurses.a /mingw/lib/libpdcurses.a
cd .. (NOTE!!!)
install *.h /mingw/include/.

Page 11 of 37

GnuCOBOL 3.2 Build Guide for MinGW (draft)

NOTE!!!

Before installing curses.h into pdcurses.h, edit it as suggested by Simon Sobisch:

* insert the necessary defines into pdcurses.h (see example below)
* copy curses.h to pdcurses.h (in the same folder)
* install *.h (which should install both curses.h AND pdcurses.h)

You can create a script to edit the file. The easiest way is add the necessary defines at the
beginning of the pdcurses.h file, so it looks something like this:

/* defines matching the creation of the library */
/* Arnold J. Trembley, 2023-06-25-Sun */
#define CHTYPE_64
#define PDC_DLL_BUILD

/*--*
 * PDCursesMod *
 --/

#ifndef __PDCURSES__
#define __PDCURSES__ 1
#define __PDCURSESMOD__ 1

In the example above, the first four lines are added, and the rest of the pdcurses.h file is the
beginning of the original curses.h file.

You can either use your favorite text editor to manually create this file, or you can create a
bat/cmd script to do this using Windows console TYPE or COPY commands:

type lines_to_add.txt > pdcurses.h (Example using Windows TYPE commands)
type curses.h >> pdcurses.h (NOTE the doubled “>>” for concatenation)

==OR==

copy lines_to_add.txt+curses.h pdcurses.txt (Example using Windows COPY command)

You will need to create your own “lines_to_add.txt” file, and in your bat/cmd script you may
want to use full path names for the source and target files.

Page 12

GnuCOBOL 3.2 Build Guide for MinGW (draft) page 13 of 33

/* defines matching the creation of the library */
/* Arnold J. Trembley, 2023-06-25-Sun */
#define CHTYPE_64
#define PDC_DLL_BUILD

The example above is the recommended defaults I use for Windows users. In other cases you
might include `#define CHTYPE_32`, `#define PDC_WIDE`, `#define PDC_FORCE_UTF8` there,
too.

/* defines matching the creation of the library */
#define CHTYPE_64 /* or CHTYPE_32, but NOT with WIDE or UTF8 */
#define PDC_DLL_BUILD /* always use this! */
#define PDC_WIDE /* for wide characters, 16-bit , and if UTF8 */
#define PDC_FORCE_UTF8 /* to override locale with UTF8 for Windows */

These defines are required to allow PDCursesMod 4.3.1a and higher to build correctly in the
GnuCOBOL make step. You will also be able to determine how PDCursesMod was configured by
reviewing your pdcurses.h header file.

Page 13 of 37

GnuCOBOL 3.2 Build Guide for MinGW (draft)

Building PDCursesMod 4.3.7 (for WINGUI or vt)

If you want to build PDCurses 4.3.7/wingui (instead of “wincon” version), or /vt the process is
basically the same, except for the CD command. Here are instructions that should work. But be
aware that in wingui “stderr” will be directed to a cmd.exe window separate from the current
screen which may not be desirable:

Copy "PDCursesMod-4.3.7.tar.gz" into your C:\MinGW\MSYS folder using Windows commands,
and then use the following bash shell commands to uncompress it:

cd /mingw/MSYS
tar xzf PDC*.tar.gz
rm PDC*.tar.gz

Then build PDCursesMod 4.3.7/wingui using these commands:

cd PDC*/wingui # note changes (or cd PDC*/vt)
make -f Makefile INFOEX=N CHTYPE_64=Y DLL=Y

Then use the following command to verify that a "pdcurses.dll" exists in the
"C:\MinGW\MSYS\PDCursesMod-4.3.7\wingui" folder.

ls *.dll

There is no “make install” in PDCurses , so you must enter the following MSYS commands into
the bash shell to install PDCurses 4.3.2 (either wincon or wingui). This is another instance
where it may help you to paste these commands into the MSYS bash shell window:

install pdcurses.dll /mingw/bin/.
install pdcurses.a /mingw/lib/libpdcurses.a
cd .. (NOTE! See special edits for pdcurses.h on previous page)
install *.h /mingw/include/.

NOTE: AS OF 19-DEC-2022, THE VT BUILD (MAKE) FAILS ON DEPRECATED GETTTIMEOFDAY.

Page 14

GnuCOBOL 3.2 Build Guide for MinGW (draft) page 15 of 33

This page is notes for alternate PDCurses 4.3.7 build options, or things to be careful with...

(use the following for wincon or wingui or vt:)

make -f Makefile INFOEX=N CHTYPE_64=Y DLL=Y

Some users may prefer to build GnuCOBOL with PDCurses 3.9 because the colors look “better”
than with PDCurses 4.1.0 (either Wincon of WinGUI), but the PDCurses color problems have
been resolved with 4.3.2a (actually fixed in 4.3.1). PDCurses 4.3.1 and higher also have more
extensive mouse support than version 3.9.

As of PDCursesMod 4.3.2a, using CHTYPE_32 allows 4,096 colors. Before that version you
needed CHTYPE_64=Y both for 16-bit character support, and support for more than 16 colors.

NOTE:

My newer GnuCOBOL binaries have PDCurses pre-built for wincon and wingui included as
follows:

 Directory of C:\MinGW\bin

06/28/2023 09:18 PM 185,615 pdcurses.dll
06/28/2023 09:18 PM 185,615 pdcurses_wincon.dll
06/28/2023 09:28 PM 202,214 pdcurses_wingui.dll

The default pdcurses.dll is “wincon”, but you can switch to a “wingui” build of pdcurses by
replacing the pdcurses.dll file with the version you want. You are encouraged to try both
versions of the pdcurses dll.

Page 15 of 37

GnuCOBOL 3.2 Build Guide for MinGW (draft)

BUILDING WITH PDCURSES 3.9 (or older)

The PDCurses package is used for COBOL SCREEN-SECTION and extended console input-output
support (DISPLAY/ACCEPT AT/WITH). You can download PDCurses 3.9 from here:

https://github.com/wmcbrine/PDCurses/releases

https://github.com/wmcbrine/PDCurses/archive/3.9.tar.gz

Copy "PDCurses-3.9.tar.gz" into your C:\MinGW\MSYS folder using Windows commands, and
then use the following bash shell commands to uncompress it:

cd /mingw/MSYS
tar xzf PDC*.tar.gz
rm PDC*.tar.gz

After you have unpacked the tarball, you would use the following commands to build PDCurses:

cd PDC*/wincon
make -f Makefile INFOEX=N CHTYPE_32=Y DLL=Y

Then use the following command to verify that a "pdcurses.dll" exists in the
"C:\MinGW\MSYS\PDCurses-3.9\wincon" folder.

ls *.dll

You can also verify the presence of “pdcurses.dll” using Windows Explorer.

There is no “make install” in PDCurses , so you must enter the following MSYS commands into
the bash shell to install PDCurses 3.4. These install commands are the same for both PDCurses
3.4 and PDCurses 4.1.0. This is another instance where it may help you to paste these
commands into the MSYS bash shell window:

install pdcurses.dll /mingw/bin/.
install pdcurses.a /mingw/lib/libpdcurses.a
cd ..
install *.h /mingw/include/.
install curses.h /mingw/include/pdcurses.h

Page 16

https://github.com/wmcbrine/PDCurses/releases

GnuCOBOL 3.2 Build Guide for MinGW (draft) page 17 of 33

Process Improvement Checkpoint

At this point in the build process I normally backup the entire “C:\MinGW” folder so that I can
restore it with gmplib and PDCurses already built. This saves me a lot of time when building
multiple versions of GnuCOBOL with either Berkeley DataBase, VBISAM 2.0.1, or no indexed
sequential file support (NODB). The backup folder should include the MinGW get program and
the shortcut to MSYS, similar to the following:

 Directory of C:\MinGW-bkup3

12/06/2019 12:08 AM <DIR> .
12/06/2019 12:08 AM <DIR> ..
12/06/2019 12:09 AM <DIR> MinGW
12/05/2019 11:09 PM 2,309 GCBUILD.lnk
09/05/2017 01:53 AM 93,184 mingw-get-setup.exe
10/28/2016 11:35 PM 2,158 msys.bat - Shortcut.lnk

For example, if I have already built GnuCOBOL with BDB and I want to build another version
with VBISAM 2.0.1, I simply restore the C:\MinGW folder from the backup and copy the MSYS
shortcut to the desktop. Then I can start MSYS with gmplib and PDCurses already built.

Backing up the C:\MinGW folder is completely optional at this point. But if you build GnuCOBOL
frequently then restoring the build folder can save you an hour or two on every subsequent
build.

At this point the next step is to build the optional indexed sequential file support (either BDB,
VBISAM 2.0.1, or no indexed sequential file support), before building from GnuCOBOL 3.2
source code files.

Page 17 of 37

../../../../../GC20-Build
../../../../../GC20-Build
file:///c:/GC20-Build

GnuCOBOL 3.2 Build Guide for MinGW (draft)

Building Berkeley Database (BDB)

The Berkeley Database (BDB) file is named "db-18.1.40.tar.gz", and it can be downloaded from:

https://download.oracle.com/berkeley-db/db-18.1.40.tar.gz

https://www.oracle.com/database/technologies/related/berkeleydb-release-history.html

Note that registration is required to download BDB. The Berkeley Database (BDB) package
provides indexed file access for the GnuCOBOL compiler. You should bypass this step if you
intend to build GnuCOBOL with VBISAM 2.x instead of BDB, or if you intend to build GnuCOBOL
with NO Indexed Sequential file support (NODB).

Copy "db-18.1.40.tar.gz" into your C:\MinGW\MSYS folder and then use the following MSYS
bash commands to decompress it:

cd /mingw/MSYS
tar xzf db*.tar.gz
rm db*.tar.gz

At this point we need to make a source code patch to BDB before continuing. Locate the file
named “C:\MinGW\MSYS\db-18.1.40\src\os_windows\os_stat.c” and search for “_tcsclen”.
There should be only one instance of it. Replace “_tcsclen” with “strlen”, and save the file. If
you are cautious you may want to first make a backup of that “os_stat.c” file, and then a
separate backup of the patched version of that file.

Then build BDB using the following commands:

cd db*/build_unix
../dist/configure --enable-mingw --prefix=/mingw --enable-compat185 LIBCSO_LIBS=-lwsock32 --
with-mutex=x86/gcc-assembly --with-cryptography=no
make
make install

It is very important to include the “--with-cryptography=no” parameter if you wish to legally
export the GnuCOBOL compiler or GnuCOBOL compiled programs outside the USA.

Page 18

GnuCOBOL 3.2 Build Guide for MinGW (draft) page 19 of 33

The "configure" command runs fairly quickly and produces hundreds of messages. The "make"
command runs for a fairly long time. The “make install" command runs very quickly. Unlike
other components the Berkeley Database package does not support “make check” or “make
test” to validate the build.

On at least one occasion it appeared as if the Berkeley DataBase “make” command failed
because there was a long wait after displaying the following messages:

libtool: install: cp -p .libs/db_printlog.exe /mingw/bin/db_printlog.exe
libtool: install: cp -p .libs/db_recover.exe /mingw/bin/db_recover.exe
libtool: install: cp -p .libs/db_replicate.exe /mingw/bin/db_replicate.exe
libtool: install: cp -p .libs/db_stat.exe /mingw/bin/db_stat.exe
libtool: install: cp -p .libs/db_tuner.exe /mingw/bin/db_tuner.exe
libtool: install: cp -p .libs/db_upgrade.exe /mingw/bin/db_upgrade.exe
libtool: install: cp -p .libs/db_verify.exe /mingw/bin/db_verify.exe
Installing documentation: /mingw/docs ...

If your BDB build appears to hang on this step, simply allow it run for a long time, at least 20
minutes. It should finish eventually. In later builds I found little or no wait for installing
documentation. The delay was probably caused by the Anti-Virus program analyzing all the doc
files being copied.

After completing the “make install” step, run the following command to verify that
"libdb-18.1.dll" was generated in "C:\MinGW\bin":

ls /mingw/bin/libdb*.dll

If you are using a different version of BDB, the “18.1” in the “libdb” name will match the version
number of the BDB package.

As of 28 October 2020, the most current version of BDB from the download site is:
"db-18.1.40.tar.gz".

Page 19 of 37

GnuCOBOL 3.2 Build Guide for MinGW (draft)

Building VBISAM 2.1.1 (make corrections to replace VBI 2.0.1 with 2.1.1)

The alternative Indexed Sequential component is VBISAM 2.0.1, which has a less restrictive
license than Oracle Berkeley DataBase. You should bypass this step if you plan to build
GnuCOBOL with Oracle Berkeley DataBase (BDB), or NODB (no ISAM support) instead of
VBISAM.

NOTE: The best version of VBISAM that I found is “vbisam-2.0.1”, posted anonymously in the
GnuCOBOL discussion forums. I am hosting it on my website in two different archives (it’s the
same source code):

https://www.arnoldtrembley.com/vbisam_install_guide_v5.1.zip

https://www.arnoldtrembley.com/vbisam-2.0.1.zip

https://www.arnoldtrembley.com/vbisam-2.1.1-ChuckH.7z

You can use either the “vbisam-2.0.1.zip” from the install guide package, or the “vbisam-
2.0.1.zip” file by itself. Simply extract “vbisam-2.0.1.zip” into your MSYS folder as a “vbisam-
2.0.1” folder. Most of the source modules have a 2016-04-27 05:01:50 date-time stamp.

You may now return to your MSYS bash shell and enter the following commands to build
VBISAM:

cd /mingw/MSYS/vbi*
./configure --prefix=/mingw
make
make check
make install

The "configure" command runs fairly quickly and produces about 100 messages. The "make"
command runs a bit longer and produces more messages. The “make check” command runs
very quickly. The "make install" command should also run very quickly.

After completing the “make install” step, run the following command to verify that
"libvbisam-1.dll" was generated in "C:\MinGW\bin":

ls /mingw/bin/libvbi*.dll

Page 20

http://www.arnoldtrembley.com/vbisam_install_guide_v5.1.zip

GnuCOBOL 3.2 Build Guide for MinGW (draft) page 21 of 33

The vbisam 2.0.1 version used for this build was posted anonymously in the GnuCOBOL forums ,
and can be downloaded from here:

https://sourceforge.net/p/gnucobol/discussion/help/thread/51d48303/5d39/attachment/vbisam_install_guide_v4.7z

This version of vbisam is based on VBISAM 2.0 by Roger While, found at this address:

https://sourceforge.net/projects/vbisam/files/vbisam2/

But it has patches from Sergey Kashyrin at www.kiska.net, and some additional edits by Mario
Matos, and some changes by the anonymous poster.

Chuck Haatvedt has created a patched version of VBISAM 2.1.1 that will also build in MSYS2 in
either 32-bit or 64-bit variations. Unfortunately, this version is not available on normal
development sites, but you can download it from my site:

https://www.arnoldtrembley.com/vbisam-2.1.1-ChuckH.7z

A newer version of VBISAM (V-ISAM 2.2?) should be available sometime in 2023 or 2024 for
GnuCOBOL 4.x, but I do not yet know where it will be hosted.

Page 21 of 37

https://www.arnoldtrembley.com/vbisam-2.1.1-ChuckH.7z
http://www.kiska.net/
https://sourceforge.net/projects/vbisam/files/vbisam2/
https://sourceforge.net/p/open-cobol/discussion/help/thread/51d48303/5d39/attachment/vbisam_install_guide_v4.7z

GnuCOBOL 3.2 Build Guide for MinGW (draft)

Build the GnuCOBOL 3.2 compiler

GnuCOBOL 3.2 preview compiler source code was downloaded from the following link:

https://sourceforge.net/projects/gnucobol/files/gnucobol/3.2/

The downloaded file was named "gnucobol-3.2.tar.xz" and dated 2023-07-28. Copy that file
into your MSYS folder. Then use the following MSYS bash shell commands to unpack the
GnuCOBOL source code:

cd /mingw/MSYS
tar xf gnu*.tar.xz (or tar xzf gnu*.tar.gz)
rm gnu*.tar.xz (or rm gnu*.tar.gz)

When you are finished you should have a subfolder named "gnucobol-3.2" in your
/MinGW/MSYS folder.

To enable JSON support in GnuCOBOL, install the cJSON.c and cJSON.h files into \GnuCOBOL\
libcob. You can do this by executing the following commands in the bash shell:

cd /mingw/MSYS/gnu*/libcob
wget https://raw.githubusercontent.com/DaveGamble/cJSON/master/cJSON.h
wget https://raw.githubusercontent.com/DaveGamble/cJSON/master/cJSON.c
cd /mingw/MSYS/gnu*

You can also download those two files ahead of time from the following locations:

https://github.com/DaveGamble/cJSON/blob/master/cJSON.c
https://github.com/DaveGamble/cJSON/blob/master/cJSON.h

Or you can download the full cJSON package from GitHub and extract cJSON.c and cJSON.h:

https://github.com/DaveGamble/cJSON/archive/master.zip

Page 22

https://sourceforge.net/projects/gnucobol/files/gnucobol/3.1/

GnuCOBOL 3.2 Build Guide for MinGW (draft) page 23 of 33

If you have disconnected from the internet and you also want to run the NIST COBOL85 test
suite, you should copy your previously downloaded “newcob.val” file into this folder:

C:\MinGW\msys\gnucobol-3.2\tests\cobol85

This may be also be more safe if you have disabled your Windows anti-virus program.

The “newcob.val” file can be downloaded in several different compressed formats from here:

https://sourceforge.net/projects/gnucobol/files/nist/

Page 23 of 37

GnuCOBOL 3.2 Build Guide for MinGW (draft)

GnuCOBOL 3.2 compiler – configure and make

The next step is to build the GnuCOBOL compiler from source code, using the following
commands in MSYS, depending upon whether you want to build with BDB, or VBISAM, or
without any ISAM support at all (--without-db):

cd /mingw/MSYS/gnu*

./configure -–prefix=/mingw -–with-db --disable-rpath
 /* to build with BDB */

-OR-

./configure --prefix=/mingw -–with-vbisam --disable-rpath
 /* to build with VBISAM 2.0.1 */

-OR-

./configure --prefix=/mingw -–without-db --disable-rpath
 /* to build without Indexed Sequential access (NODB) */

If you plan to build the GnuCOBOL compiler so that its internal workings can be debugged, add
the following two parameters to your ./configure statement:

--enable-debug -–enable-cobc-internal-checks

Be aware that “--enable debug” has a performance penalty and disables all COBOL optimization.
For most purposes it is enough to simply enable the cobc internal checks.

After running ./configure, here are the next four steps to run:

make # Build the GnuCOBOL compiler
make check # Test the GnuCOBOL build
make test # Run NIST COBOL 85 test suite
make install # Prepare Install format
make distmingw # Prepare default binary folders

The default or typical GnuCOBOL path is to build the compiler with Oracle Berkeley DataBase.
The next comments assume that was your choice.

Page 24

GnuCOBOL 3.2 Build Guide for MinGW (draft) page 25 of 33

The “./configure” step runs for less than one minute and generates one or two screens of
diagnostic or informational messages.

The "make" step runs for about 2 minutes and generates hundreds of messages.

The "make check" step performs 1,184 basic tests against the GnuCOBOL 3.2 compiler, and
takes 10-15 minutes to run.

The "make test" (NIST COBOL85 test suite) generates hundreds of messages and runs for about
5-10 minutes. “make install” should run in a minute or less.

Simon Sobisch suggested some alternate versions of the make commands. You can use these if
your build PC has 4 CPU’s (or 4 threads), and they should speed up the long-running “make”
steps.

make -j4
make check TESTSUITEFLAGS="--jobs=4"
make -j4 test

I have not tested these alternate “make” commands, although I know at least two developers
who have successfully used this speed-up. My build machine is a ten year old Dell Business
laptop with Windows 8 PRO 64-bit and an SSD. The processor is an Intel Haswell Core i7, 3.00
Ghz, with 16 gigabytes of RAM.

Page 25 of 37

GnuCOBOL 3.2 Build Guide for MinGW (draft)

Here are the “make check” test results summary from building GnuCOBOL with COBOL
ReportWriter and BDB for ISAM:

Test results.

ERROR: 1262 tests were run,
34 failed (31 expected failures).
20 tests were skipped.

testsuite.log was created.

Please send `tests/testsuite.log' and all information you think might help:

 To: <bug-gnucobol@gnu.org>
 Subject: [GnuCOBOL 3.2] testsuite: 8 808 809 failed

You may investigate any problem if you feel able to do so, in which
case the test suite provides a good starting point. Its output may
be found below `tests/testsuite.dir'.

This was a very successful outcome.

The results will be slightly different for VBISAM or NODB (No ISAM) builds of GnuCOBOL.

Page 26

GnuCOBOL 3.2 Build Guide for MinGW (draft) page 27 of 33

Here are the results from running the “make test” step for NIST COBOL85 tests with Berkeley
Database:

------ Directory Information ------- --- Total Tests Information ---
Module Programs Executed Error Crash Pass Fail Deleted Inspect Total
------ -------- -------- ----- ----- ----- ---- ------- ------- -----
NC 95 95 0 0 4393 0 4 1 4398
SM 17 17 0 0 291 0 2 1 294
IC 25 25 0 0 246 0 4 0 250
SQ 85 85 0 0 518 0 0 89 607
RL 35 35 0 0 1827 0 5 0 1832
ST 40 40 0 0 288 0 0 0 288
SG 13 13 0 0 310 0 0 0 310
OB 7 7 0 0 39 0 0 0 39
IF 45 45 0 0 733 0 0 0 733
RW 6 6 0 0 40 0 0 0 40
DB 16 16 0 0 418 0 4 27 449
IX 42 42 0 0 507 0 1 0 508
------ -------- -------- ----- ----- ----- ---- ------- ------- -----
Total 426 426 0 0 9610 0 20 118 9748

This was a very good result, with 9610 tests passing out of 9748, and no program abends or
failed tests.

In previous builds I also tested GnuCOBOL with a small COBOL source file in OpenCobolIDE 4.7.6
(by changing the OpenCobolIDE preferences) and no problems appeared.

Page 27 of 37

GnuCOBOL 3.2 Build Guide for MinGW (draft)

Building GCSORT

If you plan to build the GCSORT utility, you should do it AFTER building the GnuCOBOL compiler
component, and before packaging the results into a binary. Here are the steps:

Download the source code from here:
https://sourceforge.net/p/gnucobol/contrib/HEAD/tree/trunk/tools/GCSORT/
(Click on "download snapshot")
You need to get version R10424or higher, last updated 03 Feb 2023.
You should have a file named something like "gnucobol-contrib-r1059-trunk-tools-GCSORT.zip"
which is about 3.8 megabytes.

Copy this file to your /MinGW/msys folder used in the builds, and extract it. Create a folder
in /msys named GCSORT. Then remove the copy of the zip archive from MSYS folder. You
should have a directory that looks like this:

 Directory of C:\MinGW\msys\GCSORT

05/11/2022 01:55 AM <DIR> .
05/11/2022 01:55 AM <DIR> ..
05/11/2022 01:55 AM <DIR> build_linux
05/11/2022 01:55 AM <DIR> build_windows
05/11/2022 01:55 AM <DIR> doc
05/11/2022 01:55 AM <DIR> gccsort_gentestcase
05/11/2022 01:55 AM <DIR> tests
12/13/2016 03:29 PM 218 AUTHORS
01/19/2022 08:31 AM 6,027 changefield.c
01/19/2022 08:31 AM 2,821 changefield.h
05/11/2022 01:38 AM 8,998 ChangeLog

Start up your MSYS shell and run the following steps:

cd /mingw/MSYS/GCSORT

make

(copy gcsort.exe to the tests folder, but it should be
done automatically by the "make" step)

Page 28

https://sourceforge.net/p/gnucobol/contrib/HEAD/tree/trunk/tools/GCSORT/

GnuCOBOL 3.2 Build Guide for MinGW (draft) page 29 of 33

gcsort --version (just for checking results so far)

 (next, build the test validation suite)

cd /mingw/msys/gcsort/tests/script/

./compile_mingw.bat (get system type, usually 1)

cd /mingw/MSYS/GCSORT/tests/bin (or possibly cd ../bin)

ls -l (if you want to see a current file list…)

$ ls -l
total 590
-rwxr-xr-x 1 Arnold Administrators 449493 Oct 22 16:37 gcsort.exe
-rwxr-xr-x 1 Arnold Administrators 47941 Oct 22 16:38 gcsysop.exe
-rw-r--r-- 1 Arnold Administrators 3 Oct 22 16:38 gcsysoprun.txt
-rwxr-xr-x 1 Arnold Administrators 35334 Oct 22 16:38 gctestgetop.dll
-rwxr-xr-x 1 Arnold Administrators 68741 Oct 22 16:38 gctestset.exe

./gctestset.exe (compile the test programs)

gctestrun 1>log_run.log 2>log_run_err.log
(run the test programs, directing logs to files)

Look in the “C:\MinGW\msys\GCSORT\tests\bin” folder and check the “log_run.log” file at the
end to see if it says 'T E S T P A S S E D'.

For the tests to succeed, you must use a version of GnuCOBOL that includes ISAM support
(either BDB or VBISAM or similar).

FINALLY, create a script OR manually COPY the “gcsort.exe” file into the \bin folder where
cobc.exe resides. This is needed for building the GnuCOBOL binary.

 Also, make copies of the manual from the \doc folder to include in your binary download.

Page 29 of 37

GnuCOBOL 3.2 Build Guide for MinGW (draft)

Due to a recent GnuCOBOL change, you must compile GCSORT for GnuCOBOL 3.2 separately,
because the compiler internals have changed. You can't run that gcsort.exe built for GC 3.2 with
runtime libraries from GnuCOBOL 3.0 through 3.1.2. You must compile a separate version of
gcsort.exe for GnuCOBOL 3.1.2, which should work with GnuCOBOL 3.0 through 3.1.2.

It appears that the reason for this is that an internal call structure for GC 4.0 has been added to
GC 3.2. GCSORT may need additional changes to build with GnuCOBOL 4.0, which is still in
“early development” stage as of 24 October 2022.

My plan is to include gcsort.exe with future GnuCOBOL builds.

Page 30

GnuCOBOL 3.2 Build Guide for MinGW (draft) page 31 of 33

Packaging the C:\GnuCOBOL folder

If you included the “make distmingw” step, the easiest way to build a binary GnuCOBOL
compiler package is to copy one of the two folders created:

 Directory of C:\MinGW\msys\gnucobol-3.2

10/22/2022 04:32 PM <DIR> .
10/22/2022 04:32 PM <DIR> ..
10/22/2022 03:42 PM <DIR> bin
10/21/2022 09:12 AM <DIR> build_aux
10/22/2022 03:42 PM <DIR> cobc
10/22/2022 03:39 PM <DIR> config
10/22/2022 03:39 PM <DIR> copy
10/22/2022 03:39 PM <DIR> doc
10/22/2022 03:42 PM <DIR> extras
10/22/2022 04:32 PM <DIR> GnuCOBOL_mingw
10/22/2022 04:32 PM <DIR> GnuCOBOL_mingw_dbg
10/22/2022 03:41 PM <DIR> lib
10/22/2022 03:42 PM <DIR> libcob
10/21/2022 09:12 AM <DIR> m4
10/22/2022 03:39 PM <DIR> po
10/22/2022 04:06 PM <DIR> tests

The “GnuCOBOL_mingw” folder is about 158 megabytes, and the “GnuCOBOL_mingw_dbg”
folder is about 188 megabytes. The larger folder includes additional files that might be needed
for debugging the compiler itself.

Page 31 of 37

GnuCOBOL 3.2 Build Guide for MinGW (draft)

Either folder will have a directory list that looks like this:

 Directory of C:\MinGW\msys\gnucobol-3.2\GnuCOBOL_mingw

10/22/2022 04:32 PM <DIR> .
10/22/2022 04:32 PM <DIR> ..
10/22/2022 04:32 PM <DIR> bin
10/22/2022 03:39 PM <DIR> config
10/22/2022 03:39 PM <DIR> copy
10/22/2022 03:42 PM <DIR> extras
10/22/2022 04:31 PM <DIR> include
10/22/2022 04:33 PM <DIR> lib
08/29/2022 10:07 PM <DIR> libexec
08/29/2022 10:09 PM <DIR> locale
10/22/2022 04:32 PM 94 BUGS.txt
10/22/2022 04:32 PM 47,368 ChangeLog.txt
10/22/2022 04:32 PM 9,020 ChangeLog_bin.txt
10/22/2022 04:32 PM 340,223 ChangeLog_cobc.txt
10/22/2022 04:32 PM 193,936 ChangeLog_libcob.txt
10/22/2022 04:32 PM 148,489 config.log
10/22/2022 04:32 PM 23,415 COPYING.DOC.txt
10/22/2022 04:32 PM 7,817 COPYING.LESSER.txt
10/22/2022 04:32 PM 35,823 COPYING.txt
10/21/2022 09:13 AM 355,116 GnuCOBOL.pdf
10/22/2022 04:32 PM 52,503 NEWS.txt
10/22/2022 04:32 PM 1,224 NIST_summary.log
10/22/2022 04:32 PM 2,342 README.txt
10/22/2022 04:32 PM 2,705 set_env.cmd
10/22/2022 04:32 PM 434,505 testsuite.log
10/22/2022 04:32 PM 3,372 THANKS.txt

The most important file to include in the distributable binary is the “set_env.cmd” file, which is
very convenient for setting the required GnuCOBOL environment variables and updating the
PATH. That is needed both for compiling and executing COBOL programs.

The next 3 pages describe an older way to prepare a distributable binary.

Page 32

GnuCOBOL 3.2 Build Guide for MinGW (draft) page 33 of 33

Packaging the C:\GnuCOBOL folder (the old way)

Assuming all the previous steps completed successfully, especially “make install”, here are the
logical steps for building the C:\GnuCOBOL folder.

Create the C:\GnuCOBOL folder (mkdir C:\GnuCOBOL)

copy C:\MinGW\bin to C:\GnuCOBOL\bin
copy C:\MinGW\share\gnu-cobol\config to C:\GnuCOBOL\config
copy C:\MinGW\share\gnu-cobol\copy to C:\GnuCOBOL\Copy
copy C:\MinGW\lib to C:\GnuCOBOL\lib
copy C:\MinGW\libexec to C:\GnuCOBOL\libexec
copy C:\MinGW\include to C:\GnuCOBOL\include

Note that these are logical instructions, not explicit copy command syntax. You can also use
Windows Explorer to copy these folders. The important thing is to be sure that all subfolders
are copied.

The Windows CMD.EXE commands would look like this, assuming "C:\GnuCOBOL" is the name
chosen for your compiler folder, and “C:\MinGW” is the name of the MinGW build folder in
Windows:

mkdir C:\GnuCOBOL
xcopy C:\MinGW\bin*.* c:\GnuCOBOL\bin\ /s /e
del c:\GnuCOBOL\bin\auto*.*
xcopy C:\MinGW\share\gnucobol\config*.* C:\GnuCOBOL\config\ /s /e
xcopy C:\MinGW\share\gnucobol\copy*.* C:\GnuCOBOL\copy\ /s /e
xcopy C:\MinGW\lib*.* C:\GnuCOBOL\lib\
xcopy C:\MinGW\lib\gcc*.* C:\GnuCOBOL\lib\gcc\ /s /e
xcopy C:\MinGW\libexec\gcc*.* C:\GnuCOBOL\libexec\gcc\ /s /e
xcopy C:\MinGW\include C:\GnuCOBOL\include\ /s /e
del c:\GnuCOBOL\include\autosp*.*
del c:\GnuCOBOL\include\curspriv.h
xcopy C:\MinGW\msys\gnucobol-3.2\extras*.* C:\GnuCOBOL\extras\ /s /e

Note the in the final “xcopy” command, the name “gnucobol-3.2” may vary depending upon the
actual name of the folder in MSYS after unpacking GnuCOBOL source code.

These commands could be built into a .BAT or .CMD file if this step will be done more than once.

NOTE: If you use “make distmingw” to build binary folders, the previous steps will not be
needed, or can save you some work.

Page 33 of 37

GnuCOBOL 3.2 Build Guide for MinGW (draft)

Simon Sobisch provided commands for removing unneeded components from the generated
compiler to reduce the size of the download file. This “.cmd” file would need to be executed in
the “c:\GnuCOBOL” folder:

echo strip out unneeded GnuCOBOL components
echo.

PAUSE

copy bin\strip* . && copy bin\libiconv* . && strip -p --strip-debug --strip-
unneeded bin*.dll bin*.exe lib*.a && del strip* libiconv*

Note that the last two lines are a single statement that concatenates four separate commands.

copy bin\strip* .
copy bin\libiconv* .
strip -p --strip-debug --strip-unneeded bin*.dll bin*.exe lib*.a
del strip* libiconv*

The resulting C:\GnuCOBOL folder is sufficient for compiling COBOL programs, but some
additional files should also be added.

Page 34

../../../../../GnuCOBOL

GnuCOBOL 3.2 Build Guide for MinGW (draft) page 35 of 33

The following files can be copied from the repository found at:

https://sourceforge.net/p/gnucobol/code/HEAD/tree/branches/gnucobol-3.x/

AUTHORS.txt
ChangeLog.txt
ChangeLog_cobc.txt
ChangeLog_libcob.txt
COPYING.txt
COPYING_DOC.txt
COPYING_LESSER.txt
GnuCOBOL 3.2 Manual.pdf
copied from C:\MinGW\msys\gnucobol-3.2\doc\gnucobol.pdf
NEWS.txt
README.txt Modified for this package
set_env.cmd Modified for this package (written by Simon Sobisch)
THANKS.txt

The "config.log", “summary.log”, and "testsuite.log" files should be copied from the MinGW
MSYS build of GnuCOBOL. They are used to diagnose compiler build problems.

Then there are several files I added for quickly testing GnuCOBOL compiler installation:

gcx.cmd Command file to compile a .cob or .cbl source file and create .exe and .lst
gcmf.cmd Command file to compile a .cob or .cbl source file and create .dll and .lst

“gcmf.cmd” assumes the input COBOL source file is in free-format
instead of fixed-format 80-byte lines.

testfunc.cob Sample COBOL program to display date compiled and current date
TestGC.cmd Command file to compile and execute testfunc.cob, once as .exe and once

as .dll, and delete the temporary exe, dll, and lst files.

cobc-help.txt Generated from the “cobc -vvh” command, saving the results.

Page 35 of 37

GnuCOBOL 3.2 Build Guide for MinGW (draft)

In actual practice, I created a full folder with all the added files, then made a copy of it before
running the “strip” commands supplied by Simon Sobisch.

Then the smaller “C:\GnuCOBOL" folder was packaged as a self-extracting file.

Based on recommendations from Simon Sobisch, I have changed the packaging of the compiler
to use open source 7-Zip self-extracting archives which provide better compression ratios.

Due to a security restriction from my web hosting service I cannot host “.exe” files. So the new
files have been renamed with “.7z” as their file extension. After downloading they can be
opened using 7-Zip, or the windows file extensions can be renamed from “.7z” to “.exe”,
allowing them to be used as self-extracting archives. The self-extracting file will prompt you to
supply a folder name for the compiler. It can also be installed to a drive other than your C:
drive.

7-Zip is open source software available from https://www.7-zip.org/

The newest MinGW binaries for GnuCOBOL can be found on the following web page:

https://www.arnoldtrembley.com/GnuCOBOL.htm

Page 36

http://www.7-zip.org/

GnuCOBOL 3.2 Build Guide for MinGW (draft) page 37 of 33

Editor or IDE options

OpenCobolIDE is a GUI (Graphical User Interface) written in Python and used to edit, compile,
and test GnuCOBOL programs. It is compatible with Unix/Linux, Windows, and Mac OSX. The
OpenCobolIDE preferences can be changed to use a different GnuCOBOL compiler instead of the
GnuCOBOL 2.0 RC2 (BDB) compiler embedded in the Windows installer for OpenCobolIDE.

The OpenCobolIDE install package for Windows can be downloaded from this site:
https://launchpad.net/cobcide/4.0/4.7.6/+download/OpenCobolIDE-4.7.6_Setup.exe

Additional information about OpenCobolIDE can be found here:
http://OpenCobolIDE.readthedocs.io/en/latest/download.html

OpenCobolIDE development ended on 15 October 2017, as announced by the author, and there
will be no future versions.

A better option might be the Open Source VS-Codium, which is also the basis for Microsoft’s
commercial Visual Studio product.

VS-Codium can be downloaded from:
https://github.com/VSCodium/vscodium/releases
look for a release named something like (with a higher version number):
VSCodiumUserSetup-ia32-1.64.0.exe (for 32-bit) OR
VSCodiumUserSetup-x64-1.64.0.exe

Online VSCodium documentation can be found here:
https://code.visualstudio.com/docs#vscode

The GnuCOBOL Programmers Guide, Quick Reference Manual, and Sample Programs Manual
can be downloaded in either A4 and USA Letter size PDF’s from here:
https://sourceforge.net/p/gnucobol/code/HEAD/tree/external-doc/guide/PDFs/

The parent page for GnuCOBOL manuals and related documentation downloads is:
https://gnucobol.sourceforge.io/

Page 37 of 37

https://code.visualstudio.com/docs#vscode
https://github.com/VSCodium/vscodium/releases
http://opencobolide.readthedocs.io/en/latest/download.html
https://launchpad.net/cobcide/4.0/4.7.6/+download/OpenCobolIDE-4.7.6_Setup.exe

